
AN10155
Philips LPC9xx microcontroller in I2C
applications

Author: Paul Seerden 2002 Jun 21

INTEGRATED CIRCUITS

Philips
Semiconductors

ABSTRACT
This application note demonstrates how to write I2C-bus driver software
for the LPC9xx microcontroller family from Philips Semiconductors.

In addition to the driver software, a small demo application program is
given. All together this note offers users a quick start in writing a complete
LPC9xx I2C system application.

2002 Jun 21 2 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

INTRODUCTION
The I²C bus consists of two wires carrying informa-
tion between the devices connected to the bus. Each
device has its own address and can act as a master
or as a slave during a data transfer. A master is the
device that initiates the data transfer and generates
the clock signals needed for the transfer. At that time
any addressed device is considered a slave. The I²C
bus is a multi-master bus. This means that more than
one device capable of controlling the bus can be
connected to it. However, the example software
given in this application note only supports (single)
master transfers.
The I²C interface on the LPC9xx is identical to the
standard byte - style I²C interface found on devices
such as the 8xC552, except for the bit rate selection.
The I²C interface of the LPC9xx conforms to the 400
kHz I2C specification.

The I2C-bus format

An I²C transfer is initiated with the generation of a
start condition. This condition will set the bus busy.
After that, a message is transferred that consists of
an address and a number of data bytes. This I²C
message may be followed either by a stop condition
or a repeated start condition. A stop condition will
release the bus master-ship. A repeated start offers
the possibility to send / receive more than one mes-
sage to / from the same or different devices, while
retaining bus master-ship. Stop and (repeated) start
conditions can only be generated in master mode.
Data and addresses are transferred in eight bit bytes,
starting with the most significant bit. During the 9th
clock pulse, following the data byte, the receiver must
send an Acknowledge bit to the transmitter. The
slave may stretch clock pulses (for timing causes). A
7-bits slave address and a R/W direction bit always
follow a start condition.

SOFTWARE
The application's (master) view on the I²C bus is
quite simple: the application can send a message to
an I²C device (slave). Also, the application must be
able to exchange a group of messages, optionally

addressed to different devices, without losing bus
master-ship. This is called a Transfer. So, one
Transfer consists of one or more messages. A
transfer always begins with a Start condition and is
ended by a Stop condition.
If a transfer contains more than one message, then
each message is separated by a “repeated Start”
condition and only the last message is followed by a
Stop condition.

General format and explanation of an I²C transfer:

S SLV_W A SUB A S SLV_R A D1 A D2 A ………. A Dn N P

S : (repeated) Start condition. SLV_W : Slave address and Write bit.

A : Acknowledge on last byte. SLV_R : Slave address and Read bit.

N : No Acknowledge on last byte. SUB : Sub-address.

P : Stop condition. D1 ... Dn : Block of data bytes.

Figure 1 Software structure and modules

Application software DEMO.C
I2CINTF.C

LPC9xx I2C driver I2CDRIVR.C

I2C bus
SDA
SCL

2002 Jun 21 3 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

Inputs (application's view) to the I2C driver are:

⇒ The number of messages to exchange (transfer).

⇒ The slave address of the I²C device for each mes-
sage.

⇒ The data direction (read/write) for each message.

⇒ The number of bytes in each message.

⇒ In case of a write message: the data bytes to be
written to the slave.

Outputs (application's view) from the I2Cdriver
are:

⇒ Status information (success or error code).

⇒ Number of messages actually transferred (not the
requested number of messages in case of an er-
ror).

⇒ For each read message: The data bytes read from
the slave.

LPC9XX DRIVER DESCRIPTION
The I²C driver module (I2CDRIVR.C) contains two
'callable' interface functions:

I2C_Init: This function directly programs the I²C in-
terface hardware and must be called only once after
'reset', but before any transfer function is executed.

The hardware I²C registers of the LPC9xx are pro-
grammed. Port pins P1.2 and P1.3, which corre-
spond to the I²C functions SCL and SDA respec-
tively, are set to the open drain mode. In our example
the bit rate is programmed to 100 Kbit/s at an internal
oscillator frequency of 7.373 MHz. To adapt this,
change the I2SCLH/L values.

I2C_Transfer: This function is used to actually per-
form a transfer. If a transfer is started, this function
returns immediately (completely interrupt driven). All
parameters affected by an I²C master transfer are
grouped within two structures. The user fills these
structures and then calls the function to perform a
transfer. The two data structures are listed below.

typedef struct
{

BYTE nrMessages;
I2C_MESSAGE **p_message;

} I2C_TRANSFER;

The first structure contains the number of messages
and a pointer to an array of pointers to message
blocks (second structure), as the two common pa-
rameters for one I²C transfer. The driver keeps a lo-
cal copy of these parameters and leaves the contents
unchanged. The message blocks are defined in a
second data structure:

typedef struct
{

BYTE address; /* The I2C slave device address */
BYTE nrBytes; /* nr of bytes to read or write */
BYTE *buf; /* pointer to data array */

} I2C_MESSAGE;

The LSB bit of the (slave) address parameter deter-
mines the direction of the message (write = 0 and
read = 1). The array buf must contain data supplied
by the application in case of a write message. The
user should notice that checking, to ensure that the
buffer pointed to by buf is at least nrBytes in length,
cannot be done by the driver. In case of a read mes-
sage, the driver fills the array. It's the user’s respon-
sibility to ensure that the buffer, pointed to by buf, is
large enough to receive nrBytes bytes.

After completing the transmission or reception of
each byte (address or data), the SI flag in the I2CON
register is set. An interrupt is generated and the inter-
rupt service handler of the I2C driver will be called. At
that time register I2STAT holds the status code.

At the end of a complete transfer, together with the
generation of a STOP condition, the I2C driver calls a
function (I2C_Ready) inside the application program,
passing the transfer status and the number of mes-
sages successfully transferred. This “call back”
function has a reserved name and must be provided
by the user (application). The transfer status (okay,
error, time-out, etc.) can be checked by the applica-
tion. An example of how this can be done is shown in
the module I2CINTFC.C.

2002 Jun 21 4 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

DEMO (APPLICATION) PROGRAM
Both files DEMO.C and I2CINTFC.C use the I2C
driver module to implement a simple application.
They are intended as examples to show how to use
the driver routines. As an example the demo applica-
tion drives a PCF8574A I/O expander with connec-
tions to 8 LED's (see figure 2). The demo program
runs the LED's turn by turn every second.

The module I2CINTFC.C gives an example of how to
implement a few basic transfer functions. These
functions allow the user to communicate with most of
the available I²C devices and serve as a layer be-
tween the application and the driver software. This
layered approach allows support for new devices
(micro-controllers) without re-writing the high-level
(device-independent) code.

Furthermore, the module I2CINTFC.C contains the
functions StartTransfer, in which the actual call to the
driver program is done, and the function I2C_Ready,
which is called by the driver after the completion of a
transfer. The flag drvStatus is used to test/check the
state of a transfer. In the StartTransfer function a
software time-out loop is programmed. If a transfer
has failed (error or time-out) the StartTransfer func-
tion prints an error message (using the UART of the
LPC9xx) and it does a retry of the transfer.

DEMO.C LISTING

/***
* LPC932 I2C demoprogram
* 1. Use T0 to generate a 1 second timer tick.
* 2. Flash main Led every second
* 3. Run leds connected to PCF8574 every second
* using LPC932 interrupt driven I2C driver.
***/

#include "i2cexprt.h"

#define PCF8574A_WR 0x70 /* i2c address */

rom char hello[] = "LPC2 - I2C test March 2002\n";

static _bit second = 0; /* one second passed flag */
static WORD count;
static BYTE iopBuf[1];
static I2C_MESSAGE iopMsg;

static void UART_Init(void)
{
 P1M1 &= 0xFE;
 P1M2 |= 0x01;
 BRGR1 = 0x01;
 BRGR0 = 0x70;
 BRGCON = 3;
 SCON = 0x52; /* mode 1, receiver enable */
}

static void ua_outchar(char c)
{
 while (!TI) ;
 SBUF = c;
 TI = 0;
}

void PrintString(rom char *s)
{
 while (*s)
 {
 if (*s == '\n')
 ua_outchar('\r');
 ua_outchar(*s);

s++;
 }
}

// LPC2 - OSC = 7,373 MHz, PRE = 2

// reload_value = -OSC/(PRE*500Hz) = -7373 = 2 msec

interrupt(1) void T0_Interrupt(void)
{
 TR0 = 0; /* Stop timer 0 */
 TL0 = 0x33; /* set timer 0 reload value */
 TH0 = 0xe3;
 TR0 = 1; /* Restart timer 0 */
 if (++count > 500) /* 500 * 2 msec = 1 sec */
 {
 count = 0;
 second = 1; /* one second passed */
 }
}

static void T0_Init(void)
{
 count = 0;
 TMOD = 1; /* Timer 0 = Mode 1, 16 Bit */
 TL0 = 0x33; /* set timer 0 reload value */
 TH0 = 0xe3;

PCF8574

I2C I/O
Expander

VCC
LPC932

SCL

SDA

Figure 2 Demo application

2002 Jun 21 5 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

 ET0 = 1; /* enable timer 0 interrupt */
 TR0 = 1; /* start timer 0 */
}

static void RunLeds(void)
{
 static BYTE ioport;

 switch (ioport) /* run I2C IOport leds */
 {
 case 0x7f: ioport = 0xfe; break;
 case 0xbf: ioport = 0x7f; break;
 case 0xdf: ioport = 0xbf; break;
 case 0xef: ioport = 0xdf; break;
 case 0xf7: ioport = 0xef; break;
 case 0xfb: ioport = 0xf7; break;
 case 0xfd: ioport = 0xfb; break;
 case 0xfe: ioport = 0xfd; break;
 default: ioport = 0xfe; break;
 }
 iopBuf[0] = ioport;
 I2C_Write(&iopMsg);
}

void main(void)
{
 TRIM = 0x3C; /* clock out at P3.0 */

 T0_Init(); /* initialize Timer 0 */
 UART_Init(); /* initialize UART */
 I2C_Init(); /* initialize I2C bus */
 EA = 1; /* General interrupt enable */

 iopMsg.address = PCF8574A_WR;
 iopMsg.buf = iopBuf;
 iopMsg.nrBytes = 1;
 iopBuf[0] = 0xff;
 I2C_Write(&iopMsg);

 PrintString(hello);

 while (1)
 {
 if (second)
 {
 second = 0;
 Led = !Led; /* toggle the LED */
 RunLeds();
 }
 }
}

I2CINTF.C LISTING

#include "i2cexprt.h"

extern void PrintString(rom char *s);

rom char retryexp[] = "retry counter expired\n";
rom char bufempty[] = "buffer empty\n";
rom char nackdata[] = "no ack on data\n";
rom char nackaddr[] = "no ack on address\n";
rom char timedout[] = "time-out\n";
rom char unknowst[] = "unknown status\n";

static I2C_MESSAGE *p_iicMsg[2];
static I2C_TRANSFER iicTfr;

static BYTE drvStatus;

void using(1) I2C_Ready(BYTE status, BYTE nr)
{
 drvStatus = status;
}

static void StartTransfer(void)
{
 WORD timeOut;
 BYTE retries = 0;

 do
 {
 drvStatus = I2C_BUSY;
 I2C_Transfer(&iicTfr);

 timeOut = 0;
 while (drvStatus == I2C_BUSY)
 {
 if (++timeOut > 40000)
 drvStatus = I2C_TIME_OUT;
 }

 if (retries == 6)
 {
 PrintString(retryexp);
 return;
 }
 else
 retries++;

 switch (drvStatus)
 {
 case I2C_OK: break;
 case I2C_NO_DATA:
 PrintString(bufempty); break;
 case I2C_NACK_ON_DATA:
 PrintString(nackdata); break;
 case I2C_NACK_ON_ADDRESS:
 PrintString(nackaddr); break;
 case I2C_TIME_OUT:
 PrintString(timedout); break;
 default: PrintString(unknowst); break;
 }
 } while (drvStatus != I2C_OK);
}

void I2C_Write(I2C_MESSAGE *msg)
{
 iicTfr.nrMessages = 1;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg;

 StartTransfer();
}

void I2C_WriteRepWrite(I2C_MESSAGE *m1,I2C_MESSAGE *m2)
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = m1;
 p_iicMsg[1] = m2;

 StartTransfer();
}

void I2C_WriteRepRead(I2C_MESSAGE *m1, I2C_MESSAGE *m2)
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = m1;
 p_iicMsg[1] = m2;

2002 Jun 21 6 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

 StartTransfer();
}

void I2C_Read(I2C_MESSAGE *msg)
{
 iicTfr.nrMessages = 1;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = msg;

 StartTransfer();
}

void I2C_ReadRepRead(I2C_MESSAGE *m1, I2C_MESSAGE *m2)
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = m1;
 p_iicMsg[1] = m2;

 StartTransfer();
}

void I2C_ReadRepWrite(I2C_MESSAGE *m1, I2C_MESSAGE *m2)
{
 iicTfr.nrMessages = 2;
 iicTfr.p_message = p_iicMsg;
 p_iicMsg[0] = m1;
 p_iicMsg[1] = m2;

 StartTransfer();
}

I2CDRIVR.C LISTING

#include "i2cexprt.h"

/* Immediate data to write into I2CON */
/* CRSEL = 0 -> CLK determined by I2SCLH / L */

#define GENERATE_STOP 0x54 /* STO=1, STA=0, SI=0 */
#define RELEASE_BUS_ACK 0x44 /* STO=STA=SI=0, AA=1 */
#define RELEASE_BUS_NOACK 0x40 /* STO=STA=SI=AA=0 */
#define RELEASE_BUS_STA 0x64 /* (rep)START, STA=1 */

static I2C_TRANSFER *tfr; /* Ptr to active trf block */
static I2C_MESSAGE *msg; /* ptr to active msg block */

static BYTE msgCount; /* Nr of messages to sent */
static BYTE dataCount; /* bytes send/received */

interrupt(6) using(1) void I2C_Interrupt(void)
{
 switch(I2STAT)
 {
 case 0x00: /* Bus Error has occured */
 I2CON = GENERATE_STOP;
 break;
 case 0x08:
 case 0x10:
 I2DAT = msg->address;
 I2CON = RELEASE_BUS_ACK;
 break;
 case 0x18:
 case 0x28:
 if (dataCount < msg->nrBytes)
 {
 I2DAT = msg->buf[dataCount++];
 I2CON = RELEASE_BUS_ACK;

 }
 else
 {
 if (msgCount < tfr->nrMessages)
 {
 dataCount = 0;
 msg = tfr->p_message[msgCount++];
 I2CON = RELEASE_BUS_STA;
 }
 else
 {
 I2CON = GENERATE_STOP;
 I2C_Ready(I2C_OK, msgCount);
 }
 }
 break;
 case 0x20:
 case 0x48:
 I2C_Ready(I2C_NACK_ON_ADDRESS, msgCount);
 I2CON = GENERATE_STOP;
 break;
 case 0x30:
 I2C_Ready(I2C_NACK_ON_DATA, msgCount);
 I2CON = GENERATE_STOP;
 break;
 case 0x38:
 I2CON = RELEASE_BUS_STA;
 break;
 case 0x40:
 if (msg->nrBytes == 1)
 I2CON = RELEASE_BUS_NOACK;
 else
 I2CON = RELEASE_BUS_ACK;
 break;
 case 0x50:
 msg->buf[dataCount++] = I2DAT;
 if (dataCount + 1 == msg->nrBytes)
 I2CON = RELEASE_BUS_NOACK;
 else
 I2CON = RELEASE_BUS_ACK;
 break;
 case 0x58:
 msg->buf[dataCount] = I2DAT;
 if (msgCount < tfr->nrMessages)
 {
 dataCount = 0;
 msg = tfr->p_message[msgCount++];
 I2CON = RELEASE_BUS_STA;
 }
 else
 {
 I2CON = GENERATE_STOP;
 I2C_Ready(I2C_OK, msgCount);
 }
 break;
 default: break;
 }
}

void I2C_Init(void)
/*****************/
{
// Fpclk = 7.373 Mhz internal oscillator
// I2c speed = Fpclk / (2*(I2SCLH+I2SCLL)

 P1M1 |= 0x0C; /* P1.2 and P1.3 to open drain */
 P1M2 |= 0x0C;
 I2ADR = 0x26; /* default slave address */
 I2SCLH = 19; /* speed ~100KHz, 50% duty */
 I2SCLL = 19;
 I2CON = RELEASE_BUS_ACK; /* enable I2C hardware */
 EI2C = 1; /* enable I2C interrupt */
}

void I2C_Transfer(I2C_TRANSFER *p)

2002 Jun 21 7 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

{
 tfr = p;
 msgCount = 0;
 dataCount = 0;
 msg = tfr->p_message[msgCount++];
 I2CON = RELEASE_BUS_STA;
}

I2CEXPRT.H LISTING

_sfrbyte TRIM _at(0x96);

_sfrbyte P1M1 _at(0x91);
_sfrbyte P1M2 _at(0x92);
_sfrbyte P3M1 _at(0xb1);
_sfrbyte P3M2 _at(0xb2);

_sfrbyte BRGCON _at(0xbd);
_sfrbyte BRGR0 _at(0xbe);
_sfrbyte BRGR1 _at(0xbf);

_sfrbyte I2ADR _at(0xdb);
_sfrbyte I2CON _at(0xd8);
_sfrbyte I2DAT _at(0xda);
_sfrbyte I2SCLH _at(0xdd);
_sfrbyte I2SCLL _at(0xdc);
_sfrbyte I2STAT _at(0xd9);
_sfrbyte IEN1 _at(0xe8);

_sfrbit EI2C _atbit(IEN1,0);

#define Led P1_7 /* microcore board led */

/**/
/* E X P O R T E D D A T A S T R U C T U R E S */
/**/

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long LONG;

typedef struct
{
 BYTE address;
 BYTE nrBytes;
 BYTE *buf;
} I2C_MESSAGE;

typedef struct
{
 BYTE nrMessages;
 I2C_MESSAGE **p_message;
} I2C_TRANSFER;

/**/
/* E X P O R T E D D A T A D E C L A R A T I O N S */
/**/

/**** Status Errors ****/

#define I2C_OK 0 /* transfer ended No Errors */
#define I2C_BUSY 1 /* transfer busy */
#define I2C_ERR 2 /* err: general error */
#define I2C_NO_DATA 3 /* err: No data in block */
#define I2C_NACK_ON_DATA 4 /* err: Nack on data */
#define I2C_NACK_ON_ADDRESS 5 /* err: Nack on addr */

#define I2C_NOT_PRESENT 6 /* Device not present */
#define I2C_ARBITRATION_LOST 7 /* Arbitration lost */
#define I2C_TIME_OUT 8 /* Time out occurred */
#define I2C_SLAVE_ERROR 9 /* slave mode error */
#define I2C_INIT_ERROR 10 /* Init (not done) */

/**/
/* F U N C T I O N P R O T O T Y P E S */
/**/

extern void I2C_Transfer(I2C_TRANSFER *p);
extern void I2C_Init(void);
extern void using(1) I2C_Ready(BYTE status, BYTE nr);

extern void I2C_Write(I2C_MESSAGE *msg);
extern void I2C_WriteRepWrite(I2C_MESSAGE *msg1,
I2C_MESSAGE *msg2);
extern void I2C_WriteRepRead(I2C_MESSAGE *msg1,
I2C_MESSAGE *msg2);
extern void I2C_Read(I2C_MESSAGE *msg);
extern void I2C_ReadRepRead(I2C_MESSAGE *msg1,
I2C_MESSAGE *msg2);
extern void I2C_ReadRepWrite(I2C_MESSAGE *msg1,
I2C_MESSAGE *msg2);

REFERENCES
For further details please refer to the following publi-
cations:

o Datasheets:
www.semiconductors.philips.com

o Example Programs:
http://www.keil.com/download/c51.asp

o Brochures / leaflets:
“The I2C-bus and how to use it”

2002 Jun 21 8 of 8

Application notePhilips Semiconductors

Philips LPC9xx microcontroller in I2C applications AN10155

Definitions
Short-form specification – The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information, see the relevant datasheet or data handbook.

Limiting values definition – Limiting values given are in accordance with the Absolute Maximum Rating System (IEC134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these
or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for
extended periods may affect device reliability.

Application information – Applications that are described herein for any of these products are for illustrative purposes only. Philips Semicon-
ductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers
Life support – These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applica-
tions do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes – Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, stan-
dard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, un-
less otherwise specified.

 Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A

Date of release: 06-02
Document order number: 9397 750 10014

Contact information
For additional information please visit
http://www.semiconductors.philips.com.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

Purchase of Philips I2C components conveys a license under the
Philips' I2C patent to use the components in the I 2C system provided
the system conforms to the I2C specifications defined by Philips. This
specification can be ordered using the code 9398 393 40011.

